Qualitative Content Analysis With ChatGPT: Pitfalls, Rough Approximations and Gross Errors. A Field Report
DOI:
https://doi.org/10.17169/fqs-26.1.4252Keywords:
ChatGPT, artificial intelligence, qualitative content analysis, theme analysis, qualitative text analysis, grounded-theory-methodology, psychoanalytical text interpretationAbstract
In this article I describe a series of test runs to examine the contribution that the AI-based program ChatGPT in both Versions 3.5. and 4 can make to a qualitative content analysis of interview texts. A short sample text with my sample solution is presented for this purpose. Rough inputs for a rather naive use ("Conduct a qualitative content analysis!") as well as differentiated specifications with questions and more precise coding instructions (prompts) led in both versions at most to rough approximations of the sample solution with a large number of gross errors. The program did not react or reacted incorrectly to different content analysis concepts (BRAUN & CLARKE, 2006; KUCKARTZ, 2014; MAYRING, 2022a; SCHREIER, 2012), did not recognize hidden text content, and failed to check for coding agreement. The results of the software, no matter what specifications were made, mostly pointed in the direction of a rough, superficial summary in the sense of a list of topics and thus appear to be less suitable for the qualitative content analysis methods I developed (MAYRING, 2022a, 2022b).
Downloads
References
Braun, Virginia & Clarke, Victoria (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3, 77-101.
Braun, Virginia & Clarke, Victoria (2024). Thematic analysis. In Norman K. Denzin, Yvonna S. Lincoln, Michael D. Giardina & Gaile S. Canella (Eds.), The Sage handbook of qualitative research (6st ed., pp.385-402). Los Angeles, CA: Sage.
Brown, George W. & Harris, Tirril (1978). Social origins of depression: A study of psychiatric disorder in women. New York, NY: Free Press.
Glaser, Barney G. & Strauss, Anselm L. (1967). The discovery of grounded theory: Strategies for qualitative research. Chicago, IL: Aldine.
Haubl, Rolf & Lohl, Jan (2020). Tiefenhermeneutik. In Günter Mey & Katja Mruck (Eds.), Handbuch Qualitative Forschung in der Psychologie (2nd edition, Vol. 2, pp.555-578). Wiesbaden: Springer VS.
Kuckartz, Udo (2014). Qualitative text analysis. A guide to methods, practice & using software. London: Sage.
Lieder, Fabio R. & Schäffer, Burkhard (2024). Reconstructive social research prompting (RSRP). Distributed interpretation between AI and researchers in qualitative research, https://doi.org/10.31235/osf.io/d6e9m [Date of Access: October 1, 2024].
Mayring, Philipp (2019). Zentrale qualitative Auswertungsverfahren. In Marius Harring, Carsten Rohlfs & Michaela Gläser-Zikuda (Eds.), Handbuch Schulpädagogik (pp.859-868), Münster: Waxmann – utb.
Mayring, Philipp (2020). Qualitative content analysis: Demarcation, varieties, developments. Forum Qualitative Sozialforschung / Forum: Qualitative Social Research, 20(3), Art. 16, http://dx.doi.org/10.17169/fqs-20.3.3343 [Date of Access: October 1, 2024].
Mayring, Philipp (2022a). Qualitative content analysis. A step-by-step guide. London: Sage.
Mayring, Philipp (2022b). Qualitative Inhaltsanalyse. Grundlagen und Techniken (13th ed.). Weinheim: Beltz.
Mayring, Philipp & Fenzl, Thomas (2022). Qualitative Inhaltsanalyse. In Nina Baur & Jürgen Blasius (Eds.), Handbuch Methoden der empirischen Sozialforschung (3rd ed., pp.691-706). Wiesbaden: Springer VS.
Mayring, Philipp; König, Joachim; Birk, Nils & Hurst, Alfred (2000). Opfer der Einheit – Eine Studie zur Lehrerarbeitslosigkeit in den neuen Bundesländern. Opladen: Leske + Budrich.
Schreier, Margrit (2012). Qualitative content analysis in practice. London: Sage
Strauss, Anselm (1987). Qualitative analysis for social scientists. Cambridge: Cambridge University Press.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Philipp Mayring
This work is licensed under a Creative Commons Attribution 4.0 International License.